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I n  this paper we consider the effect of a model boundary-layer flow on the 
hydrodynamic and morphological stability of a simple model of the solidification of 
a binary alloy. We conduct a linear analysis and develop asymptotic solutions for 
large Schmidt number and large Reynolds number. We also present numerical 
solutions for data appropriate t o  a lead-tin alloy. We show that for modes parallel 
to the free-stream velocity the flow is responsible for the appearance of travelling 
waves and, for common values of the material parameters, may stabilize the 
morphological stability of the interface. However the morphological stability of 
modes perpendicular to the free-stream velocity is unaffected by the presence of the 
flow. The hydrodynamic stability of the boundary layer is very weakly affected by 
the presence of the interface, which we attribute to the large Schmidt numbers 
associated with real crystal growth situations. 

1. Introduction 
The unidirectional solidification of a liquid binary alloy in the presence of an 

imposed temperature gradient is the main method by which electronic materials are 
produced. Examples of these materials are doped silicon, gallium arsenide and 
indium phosphide. These alloys are used in the manufacture of electronic devices 
such as microprocessors and memory chips which are widely used in an increasing 
range of modern electronic products. With the increasing miniaturization of these 
devices more stringent demands are placed on the quality of the materials produced 
by this process. In  particular spatial variations in the composition of the alloy or 
defects in the atomic lattice can severely impair the performance of the end product. 
It is known that the planar, solid/liquid interface of a steadily freezing binary alloy 
may become unstable to a cellular structure (Rutter & Chalmers 1953; Morris & 
Winegard I969 ; McCartney & Hunt 1981), resulting in unwanted compositional 
inhomogeneities in the solidified material. This is known as the morphological 
instability. The current technological importance of microchip technology has 
motivated increasing theoretical investigation of the morphological instability, and is 
the subject of a review by Coriell, McFadden & Sekerka (1985). 

The first explanation of the morphological instability was given by Tiller et al. 
(1953) in terms of the mechanism of constitutional supercooling, the idea behind 
which is that the segregation of one component of the alloy (henceforth referred to as 
the solute) a t  the freezing solid/liquid interface gives rise to a solute boundary layer 
in the liquid adjacent to the interface. Since the freezing temperature of the alloy 
depends on its composition, under certain conditions the liquid in the solute 
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boundary layer may be beneath its freezing temperature and thus supercooled. In  
such a situation perturbations of the interface will encounter supercooled fluid and 
therefore may be expected to grow, rendering the interface unstable. From these 
considerations Tiller et al. (1953) deduced the constitutional supercooling criterion 
GImG, > 1 for stability, where G and G, are respectively the temperature and solute 
concentration gradients measured at the interface, and m is the slope of the liquidus 
line on the equilibrium phase diagram of the alloy. The linear stability analysis for 
this situation was first conducted by Mullins & Sekerka (1964). This has been 
extended to the weakly nonlinear regime by Wollkind & Segel (1970) and Wollkind, 
Oulton & Sriranganathan (1984). 

Fluid motion within the melt is known to have considerable influence on the 
stability of thc systcm and has been the subject of reviews by Coriell & Sekerka 
(1981) and Ulicksman, Coriell & McFadden (1986). The effect of model forced flows, 
representing larger scale fluid motions in the melt, on the morphological stability of 
the solid/liquid interface has been considered analytically by Delves (1968, 1971) for 
Blasius and quadratic flow profiles, and numerically by Coriell et al. (1984) for a 
Couette flow. In both cases a linear stability analysis was employed which predicted 
some stabilization of the morphological instability for disturbances with wave 
vectors in the direction of fluid flow. Brattkus & Davis ( 1 9 8 8 ~ )  conducted a weakly 
nonlinear analysis for a model flow representing the solidification of a rotating disk. 
They found that the flow over the interface induced by rotation promotes a long- 
wave instability. Brattkus & Davis (19883) and McFadden, Coriell & Alexander 
(1988) have considered the effect of a planar stagnation-point flow. In particular 
Brattkus & Davis (19883) found a destabilization of the system for long-wavelength 
disturbances which propagate against the direction of the flow. McFadden et al. 
(1988) conducted a numerical investigation of this situation and predicted the flow 
to have a stabilizing effect on the morphological stability of the system. 

McFadden et al. (1984) and Fang et al. (1985) considered theoretically and 
experimentally the stability of a system in which a long, vertical, heated wire is 
surrounded by a cylindrical melt confined by an annulus of its solid. The simplest 
case of a single-component melt was considered and a convective instability was 
observed for a temperature difference between wire and solid approximately one 
tenth that required for a rigid (non-freezing) interface. These results indicate the 
possibility of strong coupling between flow and morphological modes of instability. 

In this paper we investigate the interaction of the morphological mode of 
instability of a planar interface with the hydrodynamic, shear mode of instability 
due to the presence of a model boundary-layer flow adjacent to the interface. The 
velocity profile we adopt is the asymptotic suction profile. This has the advantage 
that it is an exact solution of the Navier-Stokes equations and so we avoid making 
the boundary-layer approximation as was done by Delves (1968, 1971). Further we 
are able to examine the linear stability of the boundary layer in this situation, a 
possibility precluded by the choice of the absolutely linearly stable Couette flow 
considered by Coriell et al. (1984). 

The stability of the asymptotic suction profile over a rigid interface has received 
much attention over the years. It has been reviewed and extended by both Chiarulli 
& Freeman (1948) and Hughes & Reid (1965). These authors obtained an 
Orr-Sommerfeld equation from a linear stability analysis that  governed the onset of 
instability. They developed approximations in the limit of large Reynolds number to 
the solutions of the Orr-Sommerfeld equation by heuristic arguments. Subsequently 
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Lakin & Reid (1982) derived uniformly valid approximations to  the Orr-Sommerfeld 
equation in this limit and so determined more accurate values for the critical 
Reynolds number. Numerical solutions of the Orr-Sommerfeld equation have been 
obtained by Ng & Reid (1980) and Mack (quoted in Drazin & Reid 1981). Hocking 
(1975) has conducted a weakly nonlinear analysis. 

In $2 we present a mathematical model and demonstrate the existence of two 
length and velocity scales, one associated with the solute field and hence the 
morphological instability, and the other associated with the shear flow instability. In 
$3  we conduct a linear stability analysis to  obtain an equation for the perturbed 
solute concentration coupled to an Orr-Sommerfeld equation for the perturbed flow. 
In  $4 an asymptotic solution of these equations is presented for the morphological 
mode of instability in the realistic limit of the Schmidt number tending to infinity. 
The linearized equations are solved numerically in $5 and results presented for values 
of the Reynolds number for which the analysis of $4 is not valid. I n  $6 we rescale the 
equations onto the scales appropriate to the shear flow instability and prove a form 
of Squire’s theorem, allowing us to consider only two-dimensional disturbances. A 
heuristic, asymptotic analysis of the limit Reynolds number tending to infinity is 
then presented in $ 7  based on the approach of Hughes &, Reid (1965). 

We show that the effect of the shear flow on the morphological stability is greatest 
for disturbances with wave vectors aligned with the flow. Such disturbances may 
stabilize or destabilize the morphological mode and we show, from the analysis in 
$4, that this is characterized by just two parameters : the segregation coefficient and 
the wavenumber of the disturbance. The analysis given in this section also provides 
an analytical description of the numerical calculations of Coriell et al. (1984) for low 
shear. From the numerical calculations for the lead-tin alloy considered in $5 we find 
that the effect of increasing the Reynolds number is to further stabilize the 
morphological mode as well as to  narrow the range of unstable wavenumbers a t  the 
onset of instability. From the asymptotic and numerical calculations in §§6 and 7 we 
find that the large Schmidt numbers associated with real alloys imply that the 
presence of the interface has negligible effect on the hydrodynamic stability of the 
boundary layer. However for lower values of the Schmidt number the effect is more 
pronounced, leading to a stabilization. 

2. The governing equations 
We consider a dilute binary alloy freezing a t  a solid/liquid interface due to the 

presence of an imposed temperature gradient. The liquid phase is in motion with a 
non-zero component of velocity parallel to the solid/liquid interface. The alloy is 
composed of two species, the more dilute of which we shall refer to  as the solute. In  
particular, we assume that the interface is initially planar and advances into the fluid 
with an average speed V,*. We locate our coordinate system in a frame of reference 
coincident with the average position of the interface, which is given by z* = 0. The 
fluid is assumed to  be of semi-infinite extent and to occupy the region z* > 0. The 
free-stream velocity and solute concentrations are prescribed in the liquid phase far 
from the interface and can be considered to represent the behaviour of larger scale 
transport processes in a real crystal-growth melt. The configuration of the system is 
shown in figure 1. Further we adopt the following assumptions : 

(i) We neglect the effect of gravity. 
(ii) There is no change of density of the alloy on solidification. 
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FIQURE 1. The configuration diagram. 

(iii) The thermal properties of the solid and the liquid phase are equal and 
thermal diffusivities are much greater than the solute diffusivity in the liquid 
phase. 

(iv) Latent heat production a t  the interface is negligible. 
(v) The liquid is incompressible. 

(vi) The effect of diffusion in the solid phase is negligible. 
(vii) The alloy is dilute. 
Although buoyancy effects are known to be important in real crystal growth 

systems (Glicksman et ab, 1986) we are concerned here with the interaction of the 
morphological instability of the interface with the hydrodynamic instability of the 
fluid flow and hence neglect them by adopting assumption (i). Assumptions (ii), (iii) 
and (iv), although not strictly true for most alloys, can be shown to have no 
qualitative effect on the morphological instability (Mullins & Sekerka 1964) and have 
the advantage that they permit the temperature to be decoupled from the solute and 
fluid velocity fields. Hence we take the temperature to be of the fixed form: 

(2.1) 

where T* is the temperature, Ti* is the temperature a t  the planar interface and G* 
is the imposed temperature gradient. For most semiconducting alloys the diffusion 
coefficient of solute in the solid is several orders of magnitude smaller than that of 
the liquid phase, hence our assumption (vi). 

Under these assumptions the Navier-Stokes equations and convection-diffusion 
equation govern the transport of momentum and solute respectively. Hence 

T* = TT -k G*z*, 

ac* 
- -k u* - VC" = m c * ,  
at* 

and we further assume the liquid phase is incompressible and so 

(2.3) 
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where u*, p * ,  C* are the dimensional velocity, pressure and solute concentration 
respectively, v and p are the kinematic viscosity and density of the fluid and is the 
solute diffusion coefficient in the liquid phase. 

The boundary conditions a t  the solid/liquid interface, which we describe by 
z* = h*(x*, y*, t*), are 

( U * + V , * f ) . A  = 0, (2.5) 

(u* + v,* z") x ii = 0, (2.6) 

Bvc**ii = (k-l)C*(V,*f+ G).ii, (2.7) 

T* = T,* + mC* + T,* 42*X*. (2.8) 

Equation (2.5) follows from conservation of mass a t  the interface, where ri is the 
unit normal to the interface directed towards the fluid. Equation (2.6) is the no-slip 
condition. Equation (2.7) expresses the conservation of solute across the interface, 
where k is known as the segregation or partition coefficient and V,* is the velocity of 
the solid/liquid interface in our moving frame of reference. The last boundary 
condition (2.8) describes the dependence of the freezing temperature of a binary alloy 
upon its composition and also, in its last term, includes capillarity effects sometimes 
referred to as the Gibbs-Thompson effect. Here T,* is the freezing temperature of the 
pure substance, m the liquidus slope, 42* is the capillarity constant and X *  is the 
curvature of the interface (assumed to be negative for a convex projection into the 
fluid). In  general the freezing temperature of an alloy is a complicated function of its 
concentration ; however, the alloy is dilute and so (2.8) assumes a linear form of this 
function. 

The far-field boundary conditions are 

u*+(UZ,O,  -V,*), (2.9) 

c* + (22, (2.10) 

as z*+ 00. 

field of the form 

and a concentration profile C,*(z*) dependent only on the z* coordinate. Then a 
steady-state solution to (2.2)-(2.4) with boundary conditions (2.5)-(2.10) is 

We consider the steady state corresponding to a planar interface, with a velocity 

u,*(x*) = (U,*(z*), 0, - V,*), (2.11) 

U,*(z*) = u'(l-exp(y)). - v,* z* 

( l - k  (-y*)) 
C,*(z*) = C2 1f-exp - , 

k 

(2.12) 

(2.13) 

(2.14) 

and then (2.1) yields T*(z*) = T$+mC,*(O)+G*z*. (2.15) 

The velocity profile is well known and is called the asymptotic suction profile. From 
(2.12) and (2.13) we observe that there are two distinct sets of velocity and length 
scales associated with this problem. The first set, V ,  = U 2  and L, = v/V,* is 
associated with the velocity profile and will be referred to  as the shear-flow scalings. 
The second set, V,  = V,* and L, = B/V,* are the solute-field scalings. 
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Initially, we shall adopt the solute-field scalings and non-dimensionalize the 
problem by putting 

x* = L , x ,  u* = K u ,  t* = ( L , / K ) t ,  p* = pv ,zp ,  

in which case the following non-dimensional, governing equations are obtained : 

au 
at 
- + u . v u  = -wp+xcv2u,  (2.17) 

(2.18) 
ac 
- + u . v c  = VZC, 
at 

w.u = 0, (2.19) 

where Se = v /D ,  is the Schmidt number. 
The boundary conditions imposed on the crystal melt interface z = h(x,  y , t )  are 

(z^+u).ii = 0, (2.20) 

(z^+u) x ii = 0, 

wc*ii = ( k -  1 )  C ( f +  Q.3, 

T =  l + M C + @ X ,  

(2.21) 

(2.22) 

(2.23) 

where M = mCz/T,* is the non-dimensional liquidus slope, 4 = @*5/b is the non- 
dimensional capillarity and X is the non-dimensional curvature of the interface. 

We define a Reynolds number Re by 

Re = Uz/V,* ,  (2.24) 

so the far-field boundary condit,ions are 

u+(Re,O, - l ) ,  C+1  as 2-3.00. (2.25) 

The steady-state solutions (2.11)-(2.14) then become 

uo(x) = (U,(Z), 0, - I ) ,  

U,(z) = Re (1 - exp ( - z / S c ) ) ,  

CJZ) = 1 - S, exp ( - z ) ,  

P , ( 4  = Po, 

where 

and 

T ( z )  = 1 +MCo(0) +Gz, 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

where 8, is the non-dimensional concentration gradient at the interface given by 

6, = Ch(0) = ( k - i ) / k .  (2.31) 

3. Linear stability analysis 

perturbation theory. We proceed in the standard way and put 
We next examine the stability of the steady-state solutions using linear 

(3.1) u ( x )  = ( l i , ( z )+qx) , v"(x ) ,  - 1 + @ ( x ) ) ,  
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C(X) = C,(Z)+c"(X) ,  (3.2) 

P W  = P,+r?(X),  (3.3) 

(3.4) 

(3.5) 

(3.6) 

h = &, y ,  t ) ,  

(6, v", 6, E,@) (x, t )  = (u, V, W ,  C,p)(z )  exp (iL(x-6t) +;by), 

L(x, y ,  t )  = aexp (ioi(s-tt)+iby), 

where 

Oi and p are the wavenumbers in the x- and y-directions respectively and c" is the wave 
speed. 

We now linearize the governing equations (2.1T)-(2.19) to obtain 

[Xc (D' - f') + D + iOi(c"- U,,(z))] ~ ( z )  = w(z) q ( z )  + i@(z), 

[Sc (D2 - f 2 )  + D + iOi(C- U,(z))] W ( Z )  = Dp(z), 

(3.7) 

(3.9) 

[Sc (D2-f')+D+iOi(6-U0(z))]~(z) = ibp(z), (3.8) 

iOiU(z) + ibv(z) + D W ( ~ )  = 0, (3.10) 

[D2-f2+D+i&(6-U0(z))] C(z)  = ~ ( z ) C ; ( x ) ,  (3.11) 

where D is the differential operator d/dz and f' = Oi2+p2. Using (3.10) to eliminate 
perturbed pressure p(z)  yields 

[Sc (D' - f')," + {D + i2(6 - U,(z))} (D' - $7) + iOiUi(z)] W ( Z )  = 0, (3.12) 

which, together with the differential equation for the perturbed solute concentration 
(3.11), are our working linearized equations for W ( Z )  and C(z) .  

The boundary conditions at  the perturbed interface (2.20) and (2.21) may be 
transferred to z = 0 yielding 

a(0) = 0, (3.13) 

(3.14) 

V(0) = 0. (3.15) 

U ( 0 )  = - UO(O) 6, 

Further (3.14) and (3.15) may be combined using (3.10) to give 

Dw(0) = ihReb/Sc, 

and (2.22) and (2.23) yield 

(3.16) 

bdc(iOi6- k) + DC(0) - (k- 1) C(0) = 0, (3.17) 

(3.18) 

where Sle is the Sekerka number defined by Sk = Moc/G. 
The far-field boundary conditions are 

w ( z ) , D ~ ( z ) , C ( z ) + O  as z+ co. (3.19) 

For given wavenumbers Oi and p, Reynolds number Re and Sekerka number Sk, as 
well as the parameters k, Sc, @ andM, the equations (3.11) and (3.12) together with 
boundary conditions (3.13) and (3.16)-(3.19) define an eigenvalue problem for 6. Let 
ti denote the imaginary part of 6 ;  then the system is linearly stable if 66, is negative 
for all wavenumbers, otherwise it is unstable. 
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If either the wavenumber Oi or Reynolds number Re are zero (or both) then, as 
Delves (1971) noted in a similar situation, the neutral curve is given by 

(3.20) 

where R ( f )  = (a+f2)t. 
This is the result of Mullins & Sekerka (1964) for the morphological instability in 

the absence of fluid flow under the assumptions of our model. The case of Oi = 0 
corresponds to modes perpendicular to  the flow direction and so these modes are 
unaffected by the shear flow redistributing the solute. When the Reynolds number 
is zero there is no imposed flow and hence we expect to recover the Mullins & Sekerka 
result. 

4. An asymptotic solution for large Schmidt number 
In  real alloy systems the Schmidt number is large, typically between 10 and 100 ; 

so in order to make a first step to determine the effect of the shear flow on the 
morphological stability of the system we consider the solution of (3.11) and (3.12) 
with boundary conditions (3.13) and (3.16)-(3.19) in the limit Sc+ 00 with Re order 
one and fixed. So we put 

m(z )  = m 0 ( z ) + ~ + ~ + o ( ~ c - 3 ) ,  s c  sc2 (4.1) 

c c  
c" = c " , + ~ + 2 + 0 ( ~ ~ - 3 ) ,  

s = So+'+J+0(Sc-3), 

sc sc2 

S S  
s c  sc2 

(4.3) 

(4.4) 

as Sc + a, where S = 1/Sk is the inverse Sekerka number. The governing equations 
(3.11) and (3.12) are then successively solved at each order of the small parameter 

4.1. Leading order 

The leading-order terms of the governing equations and boundary conditions give a 
simple pair of ordinary differential equations which are easily solved explicitly to 

1 /sc . 

give 

(4.5) 

where R = (f2++-iOi2,)~. (4.6) 

This is the leading-order approximation to the dispersion relation. Upon considering 
the imaginary part of (4.5) the exchange of stabilities for this approximate dispersion 
relation can be shown to hold, that is setting Im (&to) to zero implies that Re (62,J is 
equal to zero. Thus on the curve of marginal stability we put 66, = 0 to obtain 

4 ' p z  - k  

MG, k - $ + R '  
S,-l+---;-= (4.7) 
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FIQURE 2. The leading-order approximation So to the inverse Sekerka number on the curve of 
marginal stability, as given by (4.7), for a range of wavenumbers f. The material parameters used 
are those of table 1 for the model leadjtin alloy with a far-field concentration of 0.01 nt YO and a 
growth speed of lo-* cm/s. 

Kinematic viscosity V 2.43 x 10-3 cmz/s 
Solute diffusion coefficient b 3.0 x 10-5 cmZ/s 
Schmidt number Sc 81 
Liquidus slope m -2.33 K/wt Yo 
Capillarity parameter Q* 1.665 x cm 
Partition coefficient k 0.3 
Melting point of lead T t  600.6 K 

TABLE 1. Values of physical parameters for model lead-tin alloy 

where R = ( 9 2  +$)a. (4.8) 
This is the equivalent result of Mullins & Sekerka (1964) for the morphological 

instability in the absence of flow in the melt. Thus at leading order the flow has had 
no effect on the redistribution of solute controlling the morphological instability. 
Comparing (2.27) and (2.28) we can see that for large Schmidt number the solute 
bounddry layer is ‘embedded’ in the viscous boundary layer and hence that the 
velocity profile is not ‘ seen ’ by the freezing interface. A typical leading-order 
marginal curve, i.e. a plot of the curve described by (4.7), is shown in figure 2 for a 
model lead/tin alloy. The appropriate material parameters are given in table 1.  

4.2. First order 
We now seek a first-order correction to the leading-order marginal state. We set 2, 
to zero in the leading-order solution, solve the first-order problem and after some 
algebra arrive a t  the following dispersion relation 

8, = ioi{c*,L(k,f)-Re U ( k , f ) } ,  
12 
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FIGURE 3. The function H*(k ,  f )  for a partition coefficient k = 0.3, corresponding to the model 

lead/tin alloy of table 1, plotted against wavenumber 7. 

and (4.1 1) 

On the marginal curve E, is real, as are S,, 4, Re, L(k,  f )  and U(k, f )  ; hence to satisfy 
(4.9) S, must be taken as zero. Thus there is no contribution to the inverse Sekerka 
number a t  this order. However the wave speed of the disturbance is given by 

where 

(4.12) 

(4.13) 

The function H * ( k ,  y )  for the case of a lead/tin alloy is shown in figure 3. In figure 4 
we indicate in (f,  k)-space the parameter regime for El to be positive or negative, 
corresponding to forward- and backward- travelling waves respectively. The observed 
wave speed at the critical wavenumber is generally positive unless the growth speed 
of the crystal is sufficiently fast corresponding to a large value of the capillarity 
parameter 4. For any particular wavenumber it is seen, from the above analysis, 
that the sign of the wave speed is dependent solely on the partition coefficient k (for 
order-one Reynolds number), although it  should be noted that the asymptotic result 
will only hold for f 2  > 1/Sc otherwise a different balance of terms is required in the 
asymptotic analysis. We also note that the speed of the disturbance is proportional 
to the Reynolds number and hence to the speed of the fluid far in the bulk of the 
melt. 
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FIGURE 4. The sign of the wave speed 2, as a function of the partition coefficient k and 

wavenumber f on the curve of marginal stability. 

4.3. Second order 
We take 6,  real as given by (4.12), solve the governing equations a t  this level of 
approximation and take the real and imaginary parts of the resulting dispersion 
relation to obtain the following expression for the growth rate of the disturbance: 

OiIm(6,) = ( k - $ + R )  
k - $ + R  

wheref, = f,(f, k ) , f ,  = f 2 ( f ,  k )  and d, = dl(f, k) are independent of Oi and given in the 
Appendix. For stability we require &Im (6,) negative, and since ( k - $ + R )  is positive 
for all k (> 0) and f then the stability criterion a t  this order is 

(k+?)f,-d,-fz 
S ,  2 OizRe2{fl-[ k - $ + R  

(4.15) 

Clearly Oi or Re equal to zero results in no correction to X as discussed a t  the end of 
$3. As f l , f 2  and d, are all independent of Oi, (S21 will be maximum when Oi = f ,  i.e. for 
modes parallel to the flow direction, in which case the criterion for marginal stability 
gives that Oi Im (6,) = 0 and so we obtain from (4.15) that 

Re2 k--r+R 2 
(4.16) 

The quantity S2/Re2 is plotted for the case k = 0.3 in figure 5. Over a wide range 
of wavenumbers it is negative, corresponding to a stabilization of modes parallel to  
the flow. Hence the modes perpendicular to  the flow will be the most unstable, i.e. 
they become unstable a t  a lower Sekerka number than any other modes. In figure 6 
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FIGURE 5 .  The correction S, to the inverse Sekerka number given by (4.16) at marginal stability 
plotted against wavenumber for disturbances with wave vectors in the x-direction. The partition 
coefficient is 0.3. 

s, < 0 

D.0 
oi 

FIGURE 6. The sign of the second-order correction S ,  to the inverse Sekerka number a t  
marginal stability as a function of wavenumber Oi and partition coefficient k. 
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we indicate the sign of S,/Re2 in (6,  k)-space. A t  the high wavenumbers typical of the 
onset of morphological instability the quantity S,/Re2 is negative, in which case 
modes perpendicular to the flow will be the most unstable. 

The analysis above can be extended to more general boundary-layer profiles 
because the expressions for 6, and S, only require Uo(0) to account for the flow. 
Related to this is the observation that on the scale of the solute boundary layer the 
horizontal component of the flow is 

Re 
Sc 

Vo(z) =-Z+O(SC-~)  as Sc-tco, 

and so is approximately a plane Couette flow. The effect of such a flow on the 
morphological stability has been considered by Coriell et al. (1984) who conducted a 
linear stability analysis and solved the resulting eigenvalue problem numerically. We 
have compared the analytic expressions for So, S,  and CAI with their numerical results 
and obtained good agreement, for low values of their shear parameter. Greater values 
of this parameter correspond to large values of our Reynolds number for which the 
analysis presented above is not valid. 

5. The numerical solution of the linearized equations 
In order to solve numerically the eigenvalue problem posed by the differential 

equations (3.11) and (3.12) and associated boundary conditions (3.13), (3.16)-(3.19) 
for the Sekerka number Sk a t  a given wavenumber and Reynolds number we adopted 
the following procedure. This sixth-order system was re-expressed as a set of twelve 
first-order differential equations for the real and imaginary parts of zz(z), C(z) and 
their derivatives. The far-field boundary conditions (3.19) were not employed 
directly but were replaced by an equivalent set of six boundary conditions a t  a finite 
value of z. This equivalent set was derived from asymptotic forms of the solutions of 
(3.11) and (3.12) for large z and is an extension of the results given by Ng & Reid 
(1980) to include the solute field. 

The interface deflection 6 was eliminated from the interfacial boundary conditions 
(3.13), (3.16) and (3.17) using (3.18) to give six boundary conditions a t  z = 0. We 
require a further condition to fix the magnitude of the eigensolution (Keller 1976) 
which we chose to be C(0) = 1. We set the imaginary part of c to zero and chose an 
initial guess for the Sekerka number Sk and the real part of c. We solved the system 
using the SUPORT code (Scott & Watts 1975) ignoring the solute flux boundary 
condition (3.17). We then iterated Sk and the real part of c employing the NAG 
nonlinear function solver subroutine C05NBF until (3.17) was satisfied, thus 
determining a point on the curve of marginal stability. 

The marginal curves and the as!ociated wave speeds for Schmidt numbers of 1 
and 5 are shown in figures 7-10 for /3 = 0 and various Reynolds numbers. Notice that 
the minima of the curves of marginal Sekerka number are rising monotonically with 
Reynolds number. For both Schmidt numbers the effect of the flow is to stabilize the 
morphological instability for modes parallel to the flow direction, the degree of 
stabilization increasing with Reynolds number. This is most pronounced for Sc = 1.  
For Sc = 5 the lower-wavenumber modes are the most stabilized which narrows the 
band of wavenumbers close to the critical Sekerka number. Thus modes 
perpendicular to the direction of flow remain the most unstable. Similar behaviour 
was found by McFadden et al. (1988) for the modes perpendicular to a planar 
stagnation-point flow. We also observe that for Sc = 1 the wave speed of the low 
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FIGURE 7. The Sekerka number Sk at marginal stability as a function of wavenumber & for various 
Reynolds numbers. The symbols A, V, +, x , 0,  0 ,  0, * indicate Reynolds numbers of 0 ,  1, 10, 
100, 1000, 10O00, 20000, and 30000 respectively. The material parameters are those of table 1 
for the model lead/tin alloy but with a Schmidt, number Sc = 1 .  The far-field concentration is 
0.01 wt % and the growth speed is lW4 cm/s. 
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FIGURE 8. The dimensionless wave speed at marginal stability as a function of Reynolds number 
for various wavenumbers. The material and growth parameters are the same as in the case of 
figure 7 .  The symbols A, V, +, x ,  0, 0 correspond to wavenumbers 0.5, 1 ,  3, 5 ,  10 
and 20 respectively. 
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FIGURE 9. The Sekerka number Sk at marginal stability as a function of wavenumher h for various 
Reynolds numbers. The symbols A, V, + , x , 0, 0, 0, * indicate Reynolds numbers of 0, 1, 10, 
100, 1000, 10OO0, 20000, and 30000 respectively. The material parameters are those of table 1 
for the model lead/tin alloy but with a Schmidt number Sc = 5. The far-field concentration is 
0.01 wt % and the growth speed is cm/s. 
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FIGURE 10. The dimensionless wave speed at  marginal stability as a function of Reynolds number 
for various wavenumbers. The material and growth parameters are the same as in the case of figure 9. 
The symbols A, V, +, x , correspond to wavenumbers 0.5, 1, 5, 10 and 20 respectively. 
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wavenumbers may become negative at a sufficiently large Reynolds number and 
from figure 10 we might expect a similar behaviour for the case Sc = 5. This 
corresponds to waves travelling in the opposite direction to the flow. 

6. The hydrodynamic instability 
We now rescale (3.7)-(3.11) onto the scalings appropriate to the shear flow as 

discussed in $2. We take a velocity scale V,  = U$ and a length scale L, = v/V,* to 
give 

[D2+D-y2-iaRe (Uo-c)]@(z)  = Rei7j(z) V,(z)+iaRep(z), 

[D2 + D - y2 - ia Re (U, - c ) ]  ~ ( z )  = iPRep(z), 

[D2 + D -y2  -iaRe (U,  - c ) ]  a(z) = Re Dp(z), 

ia@(z) + i,&(z) + Di7j(z) = 0, 

[D2 + Sc D - y2 - ia Re Sc (U, - c)] C ( z )  = Re Sc Ch(z) a(z), 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

U,(x) = 1-exp(-z), (6.6) 

where c = Re-lt, (a,P, y )  = Sc (&,i,f) and from (2.12) and (2.13) 

l - k  
C,(z) = 1+-exp(-Scz). 

k (6.7) 

The boundary conditions (3.13)-(3.15), (3.17) and (3.18) become 

a(0) = -8, (6.8) 

v(0) = 0, (6.9) 

w(0) = 0, (6.10) 

SG,(iacRe -kSc]+Df?(O)-Sc(k-l)C(O) = 0, (6.11) 

-={--1+-}8, C(0) 1 *Y 
G, Sk  MGC 

and ~ ( z ) , ~ ( z ) , i 7 j ( z ) , C ( z ) ~ O  as z+m, 

where Gc = Sc6,  and 42 = Sc@. 

(6.12) 

(6.13) 

6.1. Squire’s transformation 
The above equations (6.1)-(6.5) with boundary conditions (6.8)-(6.13) can be 
converted to an equivalent set of two-dimensional equations by the appropriate 
Squire’s transformation (see Drazin & Reid 1981). We set 

Z = y ,  &E = a@+/%, G = a, @/& = p / a ,  ZC = ac,  &8= as, (6.14) 

and define a new Reynolds number Be by 

Be = a Re/&. 

Then (6.1)-(6,15) become 

(6.15) 

[D2 + D - Z2 - is&( U,  - c ) ]  E ( z )  = Be G(z) &(z )  + iZ&y?(z), (6.16) 

[D2+D-Z2-i&&(U,-c)]G(~) = keI)@(z),  (6.17) 
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(6.18) 

(6.19) 

G(0) = -6 ,  (6.20) 

G(0) = 0, (6.21) 

G”G,{idaec-kSc}+D6(O)-Sc(k- 1)6(0) = 0, (6.22) 

idi.ii(z) + DG(z) = 0, 

[D2 +Sc D - di2 - idifie Sc (17, - c ) ]  G ( z )  = fie Sc CA(z) G(z), 

with boundary conditions - 

-- --1+-}6, %!d2 - 
‘:) - { ik MG, 

(6.23) 

and s(z),G(z),G(z)+o as z + c o .  (6.24) 

These equations have exactly the same form as (6.1)-(6.5) and (6.8)-(6.13) with 
/3 = v = 0 and they thus define the equivalent two-dimensional problem. It is 
sufficient therefore to consider only two-dimensional disturbances from which the 
solutions to the full three-dimensional problem can be obtained merely by reversing 
the transformation (6.14) and (6.15). Since f ie  = Re/(l +p”/aZ)i is always less than or 
equal to Re we have a form of Squire’s theorem for this problem stating that for fixed 
Sekerka number it is sufficient to consider only two-dimensional disturbances in 
order to determine the minimum critical Reynolds number for the shear flow 
instability. Clearly the Reynolds number will be least when /? is zero, hence the most 
unstable mode occurs in the direction of the free-stream flow. 

6.2. Two-dimensional equations 

In the light of the above we consider only two-dimensional disturbances. Hence we 
introduce a stream function @(x, z ,  t )  in (6.1)-(6.5) and (6.8)-(6.13) such that 

a$ u(x,  2, t )  = --, w(x ,  2, t)  = -, aZ ax 
(6.25) 

where $(x, z ,  t )  = $ ( z )  exp (ia(x-ct)), (6.26) 

and after eliminating ~ ( z )  we obtain 

[(D2 - a2) (D2 + D - a2) - iaRe {( U, - c )  (D2 - a’) - Ui}] $ ( z )  = 0, 

[D2 + Sc D - a2 - ia Re Sc (U, - c ) ]  C(z)  = ia Re Sc Ci(z )  $ ( z ) ,  

(6.27) 

(6.28) 

with boundary conditions 
$ ( O )  = 0, (6.29) 

D$(O) = 6, (6.30) 

(6.31) 6GC{iacRe-kSc}+DC(O)-Sc (k- l)C(O) = 0, 

co = T(a, Sk) 6, 
Gc 

(6.32) 

and $(z),D$(z),C(z)+O as z+ co, (6.33) 

where 
1 %a2 

T(a,Sk)  =-- l+-  
Sk MGC 

(6.34) 

Equations (6.27)-(6.33) thus define an eigenvalue problem for c. 
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7. Asymptotic solution for high Reynolds number 

In this section we seek a solution of (6.27), (6.28) and the associated boundary 
conditions (6.29)-(6.33) for the perturbed flow and solute concentration respectively, 
in the limit Re + co. We proceed in three stages. In  the first we consider the perturbed 
flow, in the second the perturbed concentration and in the final stage we apply the 
interfacial boundary conditions to obtain an asymptotic form of the dispersion 
relation. 

7.1.  The perturbed flow 
As we have neglected buoyancy effects the modified Orr-Sommerfeld equation (6.27) 
is decoupled from the perturbed solute concentration. Thus the general form of the 
solution in the limit Re --f co is identical to that of the asymptotic boundary-layer, 
profile obtained by Hughes & Reid (1965). Here we summarize the relevant points 
of their analysis and refer the reader to Hughes & Reid (1965) and Drazin & Reid 
(1981) for further details. 

These authors showed that the corresponding Rayleigh's equation (in which 
viscous effects are neglected) has a regular singular point known as the critical point 
a t  z = z, where 

They went on to show that the solution of (6.27) is of the form 

2, = -log(l-c). (7.1) 

(7.2) 5 0 )  = a1 @(XI + a2 4 3 ( Z ) >  

as Re+ co, where a, and u2 are constants to be determined from the boundary 
conditions. The function @(z)  is the so-called inviscid solution and is given from 
Rayleigh's equation as 

@ ( z )  = exp { -a(z-2,)) 1 - (1 - t )  F ( p  + 1, q + 1 ; 2 ; 1 - t )  log (1 - t )  

00 

- n=o c A,(a) (' (n+ -"n+l} 1 )  ! + O(Re-l) .  (7.3) 

Here t=exp(-z) / ( l -c) ,  

(7.4) 

p = a + (1  +a2):, q = a- ( 1  +a2): and F(a, b ; c ; x) is the hypergeometrie function 
normalized to unity at  x = 1. The functions T(z) and @(z) are the gamma and 
digamma functions respectively. The function q53(z) in (7.2) is known as the viscous 
solution and is given by 

as Re + co, where 
4&) = A,(5,2) + W e - ; ) ,  (7.5) 

6 = ( X - Z , ) / E ,  E = (iaRe q)-i ,  (7.6) 
and A, (x ,p )  is a generalized Airy function see (Drazin & Reid 1981). We define U; 
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This viscous solution acts on a lengthscale O ( E )  ( -  O(Re-5)) about z = z, and indicates 
the presence of a critical layer in which viscous effects are important,Below we 
require the local representation of @(z)  in the critical layer, denoted by @([). This is 
obtained from the rescaling (7.6) applied to the modified On-Sommerfeld equation 
to  give 

E u 2  
& ( [ ) = A (  €[+$ 5 2 2 )  - + 1 (Bag,  2,  1)  - H [ )  + O(E2), (7.7) ul, 

where B3([,2, 1)  is a generalized Airy function, A = 1-2y-a-@(p+l)-t+k(q+1), 
and H = - y +  1 +logef2xi is chosen to match 6([) with @ ( z ) .  Here y is Euler's 
constant. 

7.2. The perturbed concentration 
We now consider the perturbed concentration. Equations (6.28) and (7.2) give that 
C(z)  satisfies 

[D2 + Sc  D - a2 + ia R e  Sc (c  - UO(z ) ) ]  C(z) = ia R e  S c  Ch(z) (a, @(z) + a2 q43(z)}. (7.8) 

The general solution is constructed from the homogeneous solution denoted by Ch(z) 
and two particular integrals, denoted by C,(z) and Cv(z), corresponding to the 
inhomogeneous inviscid and viscous flow terms, @(z) and q43(z) respectively, in 
(7.8). 

First we seek a solution of the homogeneous form of (7.8) as a regular pertur- 
bation series in ReV1. It is easily shown that this procedure gives 6, = 0 provided 
c-Uo(z)  =k 0, indicating the presence of a singularity at z = z,. Thus there 
exists a corresponding critical layer about this point. In this layer solute diffusion 
balances solute advection and hence we refer to it as the diffusive critical layer. 
From this consideration we find that the scale of the diffusive critical layer is O(E,)  
where E ,  = ~Sc-5. Thus we define a new inner variable 7 by 

7 = ( Z - - Z , ) / E , ,  (7.9) 

and note that E ,  + 0 as Re + GO. We denote the representation of Ch in this layer by 
eh(7), in which case the (7.8) gives that 

(7.10) 

hence (7.11) 

Thus Ch(z) = A , ( ~ , O ) + O ( ( R e S c ) - ~ )  E sc-3 as Re+oo.  (7.12) 

This provides the leading-order approximation to the homogeneous solution of 
(7.8). 

Before considering the particular integrals of (7.8) we shall explain the different 
lengthscales involved in solving this aspect of the problem. The asymptotic solutions 
we present are dependent on viscous and diffusive effects in the vicinity of the critical 
layers that control the onset of instability. As we have demonstrated above, there is 
a solute diffusion critical layer which acts on a scale O(E, )  about z,. However the 
presence of the inhomogeneous terms in (7.8), corresponding to convective transport 
due to  the perturbed flow, gives rise to  two additional scales on which the perturbed 
solute acts. The first is a scale O ( E )  due to the viscous critical layer and the second 
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is an O( 1) lengthscale which defines an outer region. This triple region structure in the 
general case provides a considerable difficulty in the construction of the particular 
integrals. We consider the two cases in which we have been able to  make progress. 
The first is the limit Re+ 00,Sc + 00, in which case the diffusive critical layer is 
embedded deep within the viscous critical layer. The second case we consider is 
Sc = 1 where the scale of both the diffusive and viscous critical layers is identical, 
and hence there are only two regions. 

Case I .  The limit Re;. co, Sc+ 00 

Cv. Taking the limit Re+ co gives that 
We construct the particular integral in two parts. We first consider c, and then 

(7.13) 

This represents c, in the outer region. However, clearly this solution is singular as 
x -f x ,  and we seek a new representation of c, in the viscous critical layer. We denote 
the solution in this region by a tilde, e.g. CI(6). Employing the inner approximations 
to @ ( z )  given by (7 .7)  in this inner layer the resulting differential equation for 6, may 
be solved to yield 

A 

as Re-too, Sc-tco. (7.14) 

It can be shown that C,(z) and 6,(6) match in this limit. However this solution is 
singular a t  6 = 0 and we require a new representation of the solution on the scale of 
the diffusive critical layer, denoted by e,(,), in order to allow solute diffusion to act. 
Thus we rescale (7 .8)  using (7 .9)  and solve the resulting differential equation to 
obtain 

61(7) = a, { -- ( C ~ ( z c ) + € , ~ C , ” ( z C ) ) + ~ B 3 ( ~ ,  0) 
A c ’ ( x  ) 

vl, 6, ul, 

(7.15) 

Again CI(7) matches with EI(() as Re+ 00,Sc+ 00 and the solution is bounded a t  
7 = 0 as required. 

We now consider the viscous particular integral. In  the same way as before 

(7.16) 

represents this particular integral in the outer region. Again this is singular a t  z = x ,  
and we seek a new description of CV in the viscous critical layer. Applying the 
appropriate rescaling of (7 .8)  and taking the limit Sc+ co we obtain 
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This clearly matches with the outer representation cv(z) given in (7.16). However 
ev([) is singular as [ -+ 0 and we again seek the solution in the diffusive critical layer 
in a similar way to before, which gives 

as Re+ co,Sc+ co. (7.18) 

This is bounded as 7 + 0 and can be shown to match with the solution in the viscous 
critical layer (7.17). Thus in the limit Re +. 00, Sc -+ 00 the leading-order approxi- 
mation to  the solution of (7.8) is taken to be 

(7.19) 

We now employ the boundary conditions (6.29)-(6.32) along with the approxi- 
mations (7.2) and (7.19) to $ ( z )  and c(z) to obtain at leading order 

(7.20) 

where 

), (7.21) 
2, F( Y Sci, 0) 

f(a,c,Re,Sk) = iacRe-kSc- - -1+-  
( j k  MG, 

and Y = z,(aRe q);. Here F ( z , p )  is the generalized, order-p Tietjens function (see 
Drazin & Reid 1981). There are two solution branches to this dispersion relation. The 
first, given by 

(7.22) 

is that obtained by Hughes & Reid (1965) for the instability of the asymptotic suction 
profile, and so corresponds to a rigid, plane interface. The second, 

(7.23) 
1 -+ f(a, c, Re, Sk) = 0, 
C 

can be identified with the morphological mode of instability. 
We have solved numerically the relation (7.22). The marginal curve in (Rei,a)- 

space is shown in figure 11 and the corresponding wave speed c is given as a function 
of the wavenumber a in figure 12. We determined the minimum critical Reynolds 
number Re,,, and the corresponding critical values of aCrit and cCrit. These were 
Recrit = 46095, a,,,, = 0.1592, cCrit = 0.1564, and compare very favourably with 
those found by Lakin & Reid (1982) and L. M. Mack (unpublished) (see Drazin & 
Reid 1981) who found Recrit = 46093, aCrit = 0.159, cCrit = 0.1564 and Recrit = 47047, 
aCrit = 0.1630, cCrit = 0.1559 respectively. 

We performed a numerical solution of the full system of differential equations and 
boundary conditions (6.27)-(6.33) by a similar method to that described in $5. Our 
results are displayed in table 2 for the model lead alloy data given in table 1 but with 
Sc = 5.  We see that over the range of Sekerka numbers between and 2 the 
critical values of Re, a, and c are almost constant. This confirms the above analysis 
that  indicates that the shear flow mode of instability is unaffected by the presence 
of the freezing interface for high Schmidt numbers. The quantitative disparity 
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FIGURE 11. The marginal strlbility curve obtained from (7.22) corresponding to the shear mode 
of instability. 
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FIGURE 12. The wave speed c along the marginal curve of figure 1 1 .  

between the asymptotic results and the numerical solution of the governing 
equations can be attributed to the neglect of the D3 operation in the approximations 
to the Orr-Sommerfeld equation, as was remarked by Lakin & Reid (1982). 

A numerical solution of the morphological branch given by (7.23) yields unrealistic 
behaviour. In  our numerical solution of the full set of differential equations described 
in $5  the wave speed (scaled with respect to the solute field scaling) on the 
morphological branch is order one as the Reynolds number increases. Thus on the 
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Sekerka number 
Sk 
10-3 
10-2 

4 x 10-2 
10-1 
1 
2 

Reynolds number 
Re 

54 379 
54 383 
54381 
54 366 
54 329 
54 324 

Wavenumber 
a 

0.1555 
0.1555 
0.1555 
0.1550 
0.1550 
0.1550 

Wave speed 

0.1499 
0.1499 
0.1499 
0.1498 
0.1499 
0.1499 

C 

Mon-dimensional constants : Schmidt number, Sc = 5 ; Partition coefficient, k = 0.3 ; Liquidus 
slope, M = 0.38804 x 

TABLE 2. Table of parameters at onset of shear flow mode of instability for a Schmidt number 
of 5 

Capillarity parameter, Q = 0.6852 x lo-*. 

shear flow scaling the wave speed becomes very small as the Reynolds number 
becomes large. This results in the two critical layers becoming adjacent to the 
solid-liquid interface and hence the outer approximations used to derive (7.20) will 
not be appropriate. 

Case 2. Sc = 1 
As noted above, in this case the viscous and diffusive critical layers act on the same 

scale. Again we take the inviscid solute particular integral to be (7.13) as Re + co. But 
now the representation in the common critical layer (which we denote by c(6)) is 
found to be 

I1 +";'"" -P3(6, -2 )+3{1+B3( f ; ,  1, l )-H-$@3(~,o)+&B3((,  -5)) +O(E) 
u2 
ul, 

as E + O ,  (7.24) 

which matches with the outer form of the inviscid particular integral (7.13). 
We find that the viscous particular integral is given by 

(7.25) 

These results give the following approximation to C(z) 

(7.26) 

Further, employing (7.2) as the approximation to # ( z )  and applying the interfacial 
boundary conditions (6.28)-(6.31) gives the following approximation to the 
dispersion relation : 

(7.27) 
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FIGURE 13. Marginal stability curves obtained from (7.27) for Sekerka numbers of (solid line) 
and 2 (broken line) when the Schmidt numher is unity. The material parameters are for the lead/ 
tin alloy given in table 1 with a far-field concentration of 0.01 w t %  and a growth speed of 

cm/s. 
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FIGURE 14. The wave speed along the marginal curves of figure 13. 

In the limit Sk --f 0 this expression becomes 

(7.28) 
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10-3 10-2 10-1 1 10 
Sk 

FIGURE 15. A comparison of the critical Reynolds number obtained from the asymptotic 
prediction, via (7.27), and a numerical solution of the eigenvalue problem, given by (6.27)-(6.33), 
for the case of Schmidt number Sc = 1. The solid and broken lines correspond to the asymptotic 
and numerical results respectively. Each has been scaled with respect to its value a t  Sk = 0 which 
corresponds to  a rigid interface. The material parameters are those of the leadltin alloy given in 
table 1 with a far-field concentration of 0.01 wt % and a growth speed of cm/s. 

which is the result of Hughes & Reid (1965) for a rigid planar interface and is 
equivalent to (7.22). This is to be expected because a small Sekerka number 
corresponds to a large temperature gradient in which case the liquidus condition 
constrains the interface deflection to be small. We have numerically solved the 
approximate dispersion relation (7.27) to obtain the marginal curve in (Ref, a)-space 
for fixed values of the Sekerka number. I n  figures 13 and 14 we present our results 
for the lead-tin system for the cases Sk = and Sk = 2. Further, in figure 15 we 
plot the critical Reynolds number derived from (7.27) as well as its values obtained 
from the numerical solution of the full differential equations. In each case the 
Reynolds number has been scaled by a factor to ensure that a t  zero Sekerka number 
they are both unity. This is so that we may compare the asymptotic and numerical 
solutions, which differ for the reasons discussed above. Clearly the results are in good 
qualitative agreement and indicate a stabilization of the shear instability with 
increasing Sekerka number. 

8. Conclusions 
In  $04 and 5 we have considered the effect of a shear flow on the morphological 

stability of the planar interface of a freezing binary alloy. A linear stability analysis 
shows that modes with wave vectors perpendicular to the flow are unaffected. 
However, the asymptotic analysis presented in $4 for the realistic limit Sc + 00 shows 
that the main effect of the flow is to cause the appearance of travelling waves along 
the interface with a speed proportional to the Reynolds number. The wave speed 
may be positive or negative and its sign is dependent solely upon the wavenumber 
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of the disturbance and the partition coefficient, as indicated in figure 4 .  A lesser effect 
of the flow is to alter the value of the critical Sekerka number by an amount that 
is proportional to  the square of the Reynolds number and is further dependent on the 
partition coefficient and wavenumber. These last two quantities solely determine 
whether these modes are stabilized or destabilized. For typical alloys the critical 
wavenumber is greater than one and thus our analysis predicts that the modes with 
wave vectors parallel to the flow are stabilized and hence the most unstable modes 
are those perpendicular to the flow. 

The numerical calculations presented in $ 5  indicate that, for the model lead/tin 
alloy, modes parallel to  the flow direction are further stabilized with increasing 
Reynolds number ; the band of wavenumbers close to the critical Sekerka number 
narrows and the critical wavenumber increases. 

In  $$6 and 7 we considered the effect of a freezing planar interface on the 
hydrodynamic stability of the model boundary-layer flow. In contrast to the 
morphological mode of instability we have shown, from an extension of Squire's 
theorem to this situation, that disturbances with wave vectors parallel to the flow 
are always the most unstable. Both the numerical calculations and the asymptotic 
results for large Reynolds number indicate that the hydrodynamic instability is only 
weakly affected. We attribute this to the mismatch in lengthscales bctween the 
solute and momentum boundary layers. However for the special case of Schmidt 
number unity there is a stronger coupling resulting in a modest stabilization. 

The authors wish to express their thanks to Dr S. R. Coriell, Dr G. B. McFadden 
and Professor D. T. J. Hurle for helpful discussion relating to this work. One of us, 
S.A.F., gratefully acknowledges the receipt of an SERC grant. 

Appendix. The functions jl(f, k), f2(q, k) and dl(f, k) 
The functions fl(f, k) and f2 ( f ,  k) are given by 

where H * ( f ,  k) is given as in (4 .13) .  
The function d l ( f ,  k )  is given by 
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